Package: index((via r-universe)

September 5, 2024
Title Zero-Based Indexing in R
Version 0.0.3.9000

Description Extract and replace elements using indices that start from
zero (rather than one), as is common in mathematical notation
and other programming languages.

License MIT + file LICENSE

Language en-GB

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2

Suggests testthat (>= 3.0.0)
Config/testthat/edition 3

Repository https://selbosh.r-universe.dev
RemoteUrl https://github.com/selbosh/index0
RemoteRef HEAD

RemoteSha c1697ecd49ea2e4769al2ae2c100e86548aec2ct

Contents
candexO e
head.index0 e
index0 e e
Print . . . o e e e e
Index

2 head.index0

c.index0 Combine zero-indexed vectors

Description

When combining vectors, if the first argument to c() is zero-indexed, then the result will be zero-
indexed as well. Otherwise, the output will revert to default R behaviour of indexing from 1.

Usage
S3 method for class 'index@'
c(...)
Arguments
objects to be concatenated. All NULL entries are dropped.
Value

A zero-indexed vector of class index0.

See Also

base::c()

Examples

X <- as.index@(1:5)
y <- as.index@(6:10)
c(x, y)

c(1:5, y)

head.index@ Return the First or Last Parts of a Zero-Indexed Object

Description

Works like utils: :head() and utils::tail().

Usage
S3 method for class 'index@'
head(x, ...)

S3 method for class 'index@'
tail(x, ...)

index0 3

Arguments
X An index@ object
Other arguments, passed to generic function
Details

Just because an object is zero-indexed, doesn’t mean that the definition of, for example, "the first
5 elements" or "the last two elements" has changed. Thus we add methods head() and tail() to
ensure they behave as normal.

Value

An index@ object

index@ Zero-based indexing of vectors

Description

Normally R is indexed from 1, but with the special index® class, you can have vectors that are
indexed from zero. Works both for subsetting (extraction) and (sub-)assignment. An index@ object
is just like a normal vector or matrix, but x[i] returns or replaces the (i+1)th index.

Usage

S3 method for class 'index@'
x[i, j, ...]

S3 replacement method for class 'index@'
x[i, j, ...]1 <- value

as.index@(x)
as.index1(x)
is.index@(x)

index_from_0(x)

Arguments
X object from which to extract element(s) or in which to replace element(s)
i, j indices specifying elements to extract or replace. Starting from 1.

other arguments passed to generic methods.

value typically an array-like R object of a similar class as x.

4 print

Details

Assign the class index® to a vector, using as.index@() or index_from_@(), then use the subset
operators normally and they will be indexed from zero. You can reverse the operation (reset to
indexing from 1) with as.index1() or by manually removing the index® class. Character indices
seem to be unaffected. Be cautious with logical indices. See examples.

Value

as.index® returns the input (typically a vector or matrix) unchanged except for the addition of an
index®@ class attribute, which enables the zero-based indexing behaviour. Use as. index1 to remove
this class again, if present.

If x is a zero-indexed object with class index@, then x[i] returns an appropriate subset of x. The
returned subset is also zero-indexed. x[i] <- value changes the ith element (effectively (i+1)th
element in ordinary R code) in place.

is.index@(x) returns TRUE if x is indexed from zero, otherwise FALSE.

Source

Partially inspired by this Stack Overflow answer: Zero based arrays/vectors in R

Examples

Vectors

v <- as.index@(letters)

v[0:3]

vlc(@, 2)] <- c('zeroth', 'second')
v

Matrices and arrays

m <- index_from_@(matrix(1:4, 2))
mlo, 1]

mfo, 1] <- 99

m

print Print Zero-Indexed Values

Description

When printing zero-indexed objects, it only seems fair that the printed output is zero-indexed as
well. So we replace those little numbers in square brackets so that they start from zero.

https://stackoverflow.com/a/49927880

print

Usage

S3 method for class 'index@'
print(x, ...)

S3 method for class 'index@'

str(object, ...)
Arguments
X, object An object to inspect/print, of class index@.

Other arguments, passed to generic function

Note

Not yet implemented for matrices, arrays or data frames.

See Also

base::print, utils::str

Index

[.index®@ (index@), 3
[<-.index@ (index0), 3

as.index@ (index9), 3
as.index1 (index9), 3

base::c(), 2
base::print, 5

c.index0, 2

head. index0, 2

indexo, 2, 3

index_from_0 (index@), 3
is.index@ (index0), 3
print, 4

str.index® (print), 4
tail.index® (head.index@), 2
utils::head(), 2

utils::str,5
utils::tail(), 2

	c.index0
	head.index0
	index0
	print
	Index

